(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
a__terms, mark

They will be analysed ascendingly in the following order:
a__terms = mark

(6) Obligation:

TRS:
Rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first

Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')

The following defined symbols remain to be analysed:
mark, a__terms

They will be analysed ascendingly in the following order:
a__terms = mark

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)

Induction Base:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0)) →RΩ(1)
0'

Induction Step:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(n4_0, 1))) →RΩ(1)
cons(mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)), 0') →IH
cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(c5_0), 0')

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first

Lemmas:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')

The following defined symbols remain to be analysed:
a__terms

They will be analysed ascendingly in the following order:
a__terms = mark

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol a__terms.

(11) Obligation:

TRS:
Rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first

Lemmas:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)

(13) BOUNDS(n^1, INF)

(14) Obligation:

TRS:
Rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)

Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first

Lemmas:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)

(16) BOUNDS(n^1, INF)