(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(add(sqr(X), dbl(X)))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(dbl(X)))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(X)
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__terms,
markThey will be analysed ascendingly in the following order:
a__terms = mark
(6) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
dbl(
X)))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
add(
X,
Y))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
X)
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first
Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')
The following defined symbols remain to be analysed:
mark, a__terms
They will be analysed ascendingly in the following order:
a__terms = mark
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(
n4_0)) →
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(n4_0, 1))) →RΩ(1)
cons(mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)), 0') →IH
cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(c5_0), 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
dbl(
X)))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
add(
X,
Y))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
X)
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first
Lemmas:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')
The following defined symbols remain to be analysed:
a__terms
They will be analysed ascendingly in the following order:
a__terms = mark
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__terms.
(11) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
dbl(
X)))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
add(
X,
Y))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
X)
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first
Lemmas:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
add(
sqr(
X),
dbl(
X)))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
dbl(
X)))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
add(
X,
Y))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
X)
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
cons :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
recip :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
mark :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
terms :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
s :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
0' :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
sqr :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__dbl :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__add :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
a__first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
nil :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
first :: recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first → recip:s:terms:cons:0':sqr:dbl:add:nil:first
hole_recip:s:terms:cons:0':sqr:dbl:add:nil:first1_0 :: recip:s:terms:cons:0':sqr:dbl:add:nil:first
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0 :: Nat → recip:s:terms:cons:0':sqr:dbl:add:nil:first
Lemmas:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(x), 0')
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0)) → gen_recip:s:terms:cons:0':sqr:dbl:add:nil:first2_0(n4_0), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)